Juan Camilo Gómez Posada y los interruptores de la vida

El colombiano y neurocientífico Juan Camilo Gómez Posada trabaja en Gotinga con canales iónicos, unas proteínas que pueden ser dianas claves en la búsqueda de nuevos fármacos.
Juan Camilo Gómez Posada posa en su laboratorio del Instituto Max Planck de Medicina Experimental, en Gotinga.

Juan Camilo Gómez Posada posa en su laboratorio del Instituto Max Planck de Medicina Experimental, en Gotinga.
Juan Camilo Gómez Posada se encuentra realizando un trabajo postdoctoral en el Departamento de Biología Molecular de Señales Neuronales del Instituto Max Planck de Medicina Experimental en la ciudad universitaria de Gotinga, situada en el Estado federado de Baja Sajonia. El interés general del grupo de investigación en el que trabaja es “el estudio de canales iónicos y cómo estos influyen en el desarrollo y comportamiento de las células”, cuenta el investigador. Los canales iónicos son unas proteínas que se encuentran en las membranas de las células y que regulan, a modo de compuerta, la entrada y salida de iones a la misma. El joven científico colombiano estudia cómo se abre y se cierra un canal iónico de potasio activado por voltaje, al que se refiere como KV10.1.
Hace aproximadamente quince años sus jefes, el también colombiano Walter Stühmer y el español Luis Pardo, descubrieron que existe una alta expresión de KV10.1 en el 70-75 % de los cánceres humanos y creen que esa sobreproducción puede jugar un papel importante en el desarrollo de la enfermedad. A partir de ahí, el objetivo principal de los investigadores ha sido “entender cómo funciona la proteína que puede estar implicada en el cáncer”, cuenta el colombiano. Es decir, se trata de estudiar cómo se produce KV10.1, dónde se localiza dentro de la célula o cómo se activa y se desactiva. A largo plazo los conocimientos científicos adquiridos serán claves para que otros grupos de investigación o empresas farmacéuticas consigan la cura contra el cáncer.
Canales iónicos: diana terapéutica muy interesante
Los canales iónicos son muy importantes porque regulan las corrientes eléctricas en el ser humano. Todo nuestro organismo funciona por impulsos nerviosos y eso significa que llevamos corriente eléctrica. En un robot, por analogía, la corriente eléctrica es el flujo de electrones que circula por los cables de cobre cuando hay un voltaje. En nuestro organismo todas las células tienen un voltaje, bastante más pequeño que en un robot pero que también produce una corriente eléctrica. El movimiento de electrones en el ser humano está representado por iones o sales, como el sodio o el potasio, que fluyen a través de los nervios. Y “los canales iónicos serían los interruptores de electricidad que controlan ese flujo de iones”, explica el investigador. Existen más de 300 canales iónicos diferentes y cada uno de ellos está relacionado con uno o varios procesos del organismo. Por ejemplo, algunos regulan la frecuencia cardíaca, otros la respiración o la visión. Hay interruptores para todo, tanto en los seres humanos como en los animales y en las plantas. Los investigadores intentan descubrir cómo funciona cada uno de esos interruptores. “Cuando lo consigamos, podremos empezar a encender y apagarlos y controlar lo que pasa en el organismo”, cuenta Juan Camilo Gómez. Los canales iónicos son por este motivo un objetivo clave en la búsqueda de nuevos fármacos.
El proyecto del neurocientífico empezó buscando las diferencias entre KV10.1 y su proteína hermana KV10.2. Estas dos proteínas, de la misma familia, son similares en un 75 %, sin embargo, la primera se sobreexpresa en el 75% de los cánceres humanos, mientras que la segunda no. “Pensábamos que entendiendo en qué radican las diferencias, podríamos identificar qué fragmento de la proteína era el responsable de producir el cáncer”, cuenta el científico. Con ese conocimiento se podría regular y modificar la proteína para que funcionara como uno quiere. En el futuro la información sobre el entendimiento de proteínas podrá aplicarse en el tratamiento individual de pacientes, dando lugar a una medicina más personalizada. Estos avances, sin embargo, requieren decenas de años: “Tras 25 años de trabajo, aún no ha salido al mercado ningún fármaco específicamente diseñado contra algún canal iónico de potasio”, cuenta el investigador. Sin embargo, gracias a esos años de investigación, algunos de los medicamentos ya disponibles encuentran nuevas aplicaciones como modificadores de estas proteínas.
El joven neurocientífico Juan Camilo Gómez Posada disfrutando de un paseo con su familia en el aeródromo de Northeim, a 20 km al norte de Gotinga.El joven neurocientífico Juan Camilo Gómez Posada disfrutando de un paseo con su familia en el aeródromo de Northeim, a 20 km al norte de Gotinga.
De Medellín a Gotinga, con escala en Bilbao
El joven colombiano, de la ciudad de Medellín, llegó a Gotinga en marzo de 2011 tras haber pasado por la Universidad del País Vasco en Bilbao, España, donde realizó su doctorado. Los dos primeros años de postdoc ha estado financiado por una beca del Gobierno Vasco y en la actualidad por el laboratorio alemán. Eligió Alemania por su calidad científica y porque no quería irse muy lejos de España. Le atraía el país y la posibilidad de aprender un idioma nuevo. Al Instituto Max Planck llegó siguiendo los pasos de su esposa polaca, también investigadora, a la que habían ofrecido un trabajo en el centro. Está contento con la calidad de vida germana, pero se queja de la inestabilidad laboral. En España se aprobó una ley para que los doctorandos obtuvieran un contrato laboral en su dos últimos años de tesis. “En Alemania yo no encontré lo mismo y a los 32 años me convertí de nuevo en becario”, cuenta con decepción. Le gusta su trabajo porque es original, multidisciplinar y le permite seguir aprendiendo, sin embargo, reconoce que ahora que tiene familia no se contenta con las mismas condiciones laborales que siendo recién licenciado. “A corto plazo me gustaría probar suerte en el sector industrial, en alguna compañía del área “bio”, cuenta con entusiasmo.

DW.DE

Anuncio publicitario

la ciencia española en Berlín

La CERFA celebró este 18 de octubre su primer simposio y presentación oficial en el Instituto Cervantes de Berlín, con el fin de favorecer la cooperación hispano-alemana en I+D. DW habló con su presidente.

El neurocientífico y presidente de la Sociedad de Científicos Españoles en la República Federal de Alemania (CERFA), Dr. Raúl Delgado-Morales, posa en el Instituto Max-Planck de Psiquiatría en Múnich, donde realiza una estancia postdoctoral con una beca Marie Curie desde 2010.
La Sociedad de Científicos Españoles en la República Federal de Alemania (CERFA) nació hace poco más de un año, en junio de 2012, a semejanza de su homóloga en el Reino Unido, la Sociedad de Científicos Españoles en el Reino Unido (CERU), con el objetivo de agrupar y representar a todos los científicos españoles desplazados en Alemania en una red de profesionales, donde poder “compartir experiencias y ayudar a que los recién llegados tengan un foro donde consultar sus dudas”, explica el el Dr. Raúl Delgado-Morales. El joven investigador barcelonés llegó a finales de 2010 al Instituto Max Planck de Psiquiatría en Múnich, donde se encuentra realizando una estancia postdoctoral con una beca europea Marie Curie.
Movilidad vs. fuga de cerebros
Cuenta que cuando llegó le sorprendió mucho la gran cantidad de científicos españoles que había trabajando en Alemania: “me pareció muy interesante la idea de crear una sociedad homóloga a la del Reino Unido”, comenta al otro lado del teléfono.
Desde su creación la Sociedad ha contado con el apoyo del Servicio Alemán de Intercambio Académico (DAAD), de la Fundación Española para la Ciencia y la Tecnología (FECYT) y de la Embajada de España en Alemania. Al día de hoy agrupa a más de 360 científicos de diversas disciplinas que trabajan en universidades, centros de investigación y laboratorios alemanes. El grupo mayoritario pertenece a investigadores postdoctorales, “porque es un grupo que tiene movilidad”, un factor muy importante según explica el investigador. Pero en la sociedad también están representados estudiantes de doctorado y universitarios, jefes de departamento, profesores de universidad y gente que trabaja en la empresa privada, entre otros. El número de españoles trabajando en las áreas científicas, técnicas y artísticas en Alemania asciende a más de 1.300, según la Oficina Federal Alemana de Migración y Refugiados, y a más de 3.300 estudiantes universitarios, según la Oficina Federal de Estadística. La idea de la sociedad es seguir creciendo y poder contribuir a estas cifras con “censos anuales del incremento o disminución de la población científica española activa en Alemania”, añade el barcelonés. Estos datos ayudarían al discurso político, que a menudo se utiliza en función de las circunstancias. Delgado-Morales considera la fuga de cerebros un tema controvertido: “Cada investigador tiene su propia historia. Yo me fui en 2010 pero no me considero fuga porque tenía claro que quería irme”, comenta el científico. La Sociedad CERFA defiende la movilidad como parte esencial de la carrera científica pero añade “creemos que esa movilidad debe de ser bidireccional”. Es decir, debe ofrecer la posibilidad de retorno, así como de atraer a científicos con talento, no sólo nacionales sino también extranjeros.
Primera reunión de la delegación de Bremen y Baja Sajonia de la Sociedad CERFA en Bremen
Alemania, uno de los países europeos con mayor inversión en I+D
Otro de los objetivos de la Sociedad CERFA es servir de interlocutor entre las instituciones alemanas y españolas y “participar en el discurso político para ayudar a mejorar el sistema de ciencia español”, aclara el científico. Delgado-Morales aboga, entre otras cosas, por unas políticas de financiación y evaluación a largo plazo: “una apuesta real del incremento anual de los presupuestos para acercarnos a la media de inversión del producto interior bruto (PIB) a nivel europeo”, explica. Los países europeos se comprometieron a incrementar su PIB en un 3% en la Estrategia de Lisboa aprobada por el Consejo Europeo en 2000. En España la financiación en I+D+i en 2010 fue de un 1,39% de su PIB y se estima que sea menor de un 1,35 % en 2011. Mientras tanto, Alemania se sitúa en 2011 entre los primeros con un 2,88% de su PIB, sólo por detrás de Finlandia, Suecia y Dinamarca. Además, existe una gran inversión privada (21,1%) en el país germano, que casi iguala a la inversión pública proveniente del Estado (22,1%). Alemania es un país productor y exportador y el sistema científico se considera vital para el desarrollo del país. “Para ellos es un motor económico”, comenta el investigador. En España, por el contrario, todo recae sobre los Presupuestos Generales del Estado, que en tiempos de crisis, como los actuales, pueden ser más o menos flexibles. El catalán defiende una mayor apuesta del Estado por la inversión privada.
A su vez, destaca la existencia de la Fundación Alemana para la Investigación Científica (DFG, en sus siglas en alemán), que juega un papel muy importante en la estabilidad del sistema científico alemán. La DFG es una organización autónoma que recibe sus fondos en gran parte del gobierno federal y de los estados federados pero que mantiene su independencia a la hora de tomar las decisiones en interés de la ciencia. La DFG financia una parte muy importante de la investigación en Alemania (34,1%). En España está contemplada desde hace años la creación de la Agencia Estatal de Investigación. Ésta es una reclamación histórica de la comunidad científica española, que ve en la agencia un mecanismo para ganar autonomía y mejorar la planificación a largo plazo de la financiación científica. En lo últimos diez años en España ha habido varios cambios en la organización de los ministerios de ciencia. Con el gobierno actual, por ejemplo, perdió la categoría ministerial y pasó a ser Secretaría de Estado. “Eso genera mucha inestabilidad administrativa”, concluye el barcelonés.
La CERFA quiere acercar la ciencia a la calle
Por último, Delgado-Morales también reconoce que los científicos tienen que hacer un mayor esfuerzo por acercar la ciencia a la sociedad. Para el catalán la comunidad científica no ha sabido explicar a la sociedad española que invertir en I+D se traduce en conocimiento y en una mejora de la calidad de vida. La Sociedad CERFA persigue acercar la ciencia a la calle, así como fomentar la difusión del trabajo de los investigadores españoles en Alemania.

DW.DE

Premio Nobel de Física 2013 (Bosón de Higgs)

Peter Higgs y François Englert predijeron la existencia de esta escurridiza partícula, responsable de dar masa a todas las demás y que reafirma el Modelo Estándar de la Física

Este año no había lugar a dudas. Si no eran ellos, ¿quién podría llevarse el premio? No existía ninguna otra investigación en el campo de la Física que superara estos impresionantes resultados, aunque la tardanza de los miembros de la Real Academia Sueca de las Ciencias en Estocolmo en dar el anuncio -alrededor de una hora y con varios retrasos- hacía pensar que existía alguna duda. Pero no, como todo el mundo esperaba, los «padres» del famoso bosón de Higgs, el físico escocés Peter Higgs y su colega belga François Englert, han ganado el Nobel de Física 2013 por predecir, de forma independiente, la existencia de esta escurridiza partícula que da masa a todas las demás y que reafirma el Modelo Estándar de la Física. Sin su existencia, el Universo no existiría tal y como lo conocemos. Fuera del premio han quedado los físicos de la Organización Europea para la Investigación Nuclear (CERN) que con sus experimentos confirmaron la existencia del bosón, quizás porque la Academia Karolinska tiene como tradición no distinguir a instituciones, sino a personas.
Higgs, de 84 años (Universidad de Edimburgo en Escocia), Englert, de 81 (Universidad Libre de Bruselas) y su colega el físico belga Robert Brout, fallecido en el año 2011, postularon en 1964 la existencia de un bosón popularmente conocido como el de Higgs o «la partícula de Dios», aunque al británico no le gustara el término. Desde entonces, la partícula ha sido buscada sin descanso. Por fin, en julio del pasado año, los físicos de CMS y ATLAS, los dos mayores experimentos del Gran Colisionador de Hadrones (LHC), ubicado en el CERN, cerca de Ginebra, en Suiza, confirmaban que, en efecto, habían encontrado una partícula que coincidía con la descripción. El hallazgo se hizo merecedor del Premio Príncipe de Asturias de Investigación Científica y Técnica 2013 y fue reconocido por la revista Science como la investigación del año.

Higgs, «abrumado»

Entonces, en esa primera presentación, el veterano Higgs no pudo contener las lágrimas. Lo que este físico tímido y sencillo llevaba sosteniendo desde hacía tanto tiempo y que llevaba su nombre se había convertido en una realidad probada. Esta mañana, en cuanto ha conocido que recibía el Nobel, el británico ha admitido sentirse«abrumado». En una declaración divulgada a través de la Universidad de Edimburgo, el investigador también ha querido felicitar a todos los que han trabajado para conseguir este avance y ha manifestado su esperanza de que este «reconocimiento de la ciencia fundamental» ayude a mejorar el «valor de la investigación teórica». Por su parte, Englert confesaba por teléfono estar «muy, muy feliz de ser reconocido» con «un premio extraordinario».
«La relación que debe existir entre teoría y experimento culmina con este premio que supone un gran reconocimiento para la teoría de la física de partículas y que es el fruto de una cooperación científica internacional con sabor europeo», ha dicho el director general del CERN, Rolf Heuer. Por su parte, el científico español Juan Alcaraz – investigador principal del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)- ha señalado a ABC que aunque el CERN no haya sido premiado, se ha reconocido internacionalemente su trabajo, informa María Teresa Benítez de Lugo desde Ginebra. «Para nosotros es un orgullo», ha explicado el físico.
La teoría de Higgs explica que existe un campo que permea todo el Universo, y las partículas se mueven a través de ese campo igual que peces en el agua. La masa sería precisamente la cantidad de resistencia encontrada por las partículas al moverse por el campo de Higgs. Algunas partículas, como los fotones, no tienen masa y pueden viajar a la velocidad de la luz. Todas las demás (protones, electrones, neutrones…) se mueven más despacio porque se encuentran con esa resistencia e interactúan con las «piezas» mínimas que componen el campo, esto es, los bosones de Higgs.
Cuando colisionan con ellos, las partículas pasan de ser «paquetes de energía» a «paquetes de materia». De esta forma, se crean todos los objetos sólidos, desde las estrellas al más diminuto insecto, pasando, por supuesto, por nosotros mismos.

A por el Universo invisible

La confirmación de la existencia del bosón de Higgs ha requerido la participación de miles de investigadores y una inversión de al menos 5.500 millones de dólares. «Sin embargo, aún son necesarios más experimentos, a través de colisiones, para comprobar sus propiedades con más precisión», advierte Alcaraz. A partir de 2015, cuando será puesto de nuevo en funcionamiento el gran acelerador del CERN, se aumentarán las colisiones y se producirán partículas en grandes cantidades para poder estudiarlas con más detalle.
El bosón de Higgs era el eslabón que faltaba para comprender el origen de la parte visible del Universo, formada por las estrellas y todo lo que está iluminado. Esta parte corresponde a solo el 5% del total por lo que el próximo desafío de la ciencia será estudiar el 95% restante formado por materia y energía oscuras, que no vemos a simple vista, informa Benítez de Lugo. «Con el descubrimiento del bosón de Higgs se ha cerrado una teoría estándar. El próximo paso será el de tratar de entender la materia y la energía oscuras usando el potente acelerador de partículas del CERN porque sabemos que existen y habrá que encontrarlas», ha explicado el científico español.
Aún no está claro a dónde conducirá este descubrimiento en el campo de la Física, considerado uno de los mayores del siglo, pero su impacto es innegable.

Historia del Nobel de Física

*******************************************************************************************
Acaba de anunciarse el Premio Nobel de Física 2013,  otorgado a Peter W. Higgs y François Englert. Según el comunicado oficial, el galardón les fue entregado “por el descubrimiento teórico del mecanismo que contribuye a nuestro conocimiento del origen de la masa de las partículas subatómicas, y que fue confirmado recientemente a través del descubrimiento de la predicha partícula fundamental, por el ATLAS y los experimentos CMS en el Gran Colisionador de Hadrones del CERN”. Conozcamos un poco más sobre estos científicos y su descubrimiento.


Es uno de los descubrimientos más importantes de la física, es EL descubrimiento de esta generación. El  bosón de Higgs es una manifestación del llamado
 campo de Higgs, que interactúa con todas las demás partículas subatómicas. Algunas de estas, como los protones y los neutrones, poseen masa, pero otras, como los fotones, no la tienen.

¿Qué es el bosón de Higgs?

Lo que enunciaron Englert y Higgs, es que al interactuar las partículas con este campo de Higgs, llevan a una diferencia de masa que es la que tiene cada partícula elemental. El campo de Higgs enlentece a algunas partículas como los protones, del mismo modo que una pelota de fútbol en un campo de miel, es decir, se hacen lentos. El haber probado de forma teórica que este campo –y la partícula Bosón de Higgs– existe, permitió comprender cómo obtienen su masa las partículas.
Esto abrió nuevos horizontes en la física, más cuando se probó su existencia mediante experimentos el año pasado. Ahora pueden comprender cómo funciona la naturaleza, esto lleva a la búsqueda de nuevas partículas, y abre muchas puertas para la física teórica.

Nobel de Medicina para quienes revelaron el misterio del "tráfico" celular

Los trabajos que, con décadas de separación, publicaron los estadounidenses James Rothman y Randy Schekman, y el alemán Thomas Südhof, han permitido entender por qué ocurren diversas enfermedades como trastornos inmunológicos y diabetes.
El sistema de transporte de las células funciona como un puerto donde el tráfico de moléculas debe estar cronometrado a la perfección para que no haya problemas.
Cada célula es una fábrica que produce y exporta moléculas. Por ejemplo, la insulina se produce y libera en la sangre, y señales químicas llamadas neurotransmisores se envían de una célula nerviosa a otra. Estas moléculas se transportan por toda la célula en pequeños paquetes llamados vesículas.
«Los tres laureados descubrieron los principios moleculares que gobiernan cómo se envía esta carga al lugar y la hora correcta», explicó el Instituto Karolinska de Estocolmo, tras anunciar a los ganadores de 2013.
Esto es crucial en la forma en que se comunica el cerebro, en la liberación de las hormonas y en partes del sistema inmune.

«Exacta organización»

Las vesículas son pequeñas burbujas de grasa que contienen las mercancías de las células. Ellas pueden enviar diversos materiales como enzimas, neurotransmisores y hormonas, alrededor de la célula. O pueden fusionarse con la superficie exterior de la célula y liberar su contenido al resto del cuerpo.
«Sin esta exacta organización maravillosa, la célula podría caer en el caos», señaló la fundación.
Un sistema defectuoso de transporte de vesículas es en parte responsable de la diabetes y los trastornos del cerebro.
Este largo camino para entender esta parte del funcionamiento del cuerpo humano empezó en los años 70 con el trabajo de Randy Schekman, quien estaba fascinado con cómo las células organizan su sistema de transporte, por lo que decidió estudiar sus bases genéticas utilizando la levadura como sistema modelo.
De acuerdo con el diario británico The Guardian, Schekman pudo identificar células de levadura con problemas de transporte, muy parecido a lo que ocurre cuando hay problemas en el sistema de transporte público.
Descubrió que la causa de este tráfico era genética, por lo que se propuso identificar esos genes mutados. Al final detectó tres clases de genes que controlan las diferentes facetas del sistema de transporte de células.

Origen ancestral evolutivo

Años más tarde, James Rothman decidió tomar el relevo. En los años 80 y 90 estudió el tráfico vesicular en células de mamíferos. El estadounidense descubrió que era una proteína la que permitía que las vesículas llegaran y se fusionaran con las membranas.


El equipo de periodistas científicos de The Guardian explica que en el proceso de fusión las proteínas en las vesículas y las membranas sólo se juntan bajo una combinación especial. Un poco como lo hacen los dientes de cada lado de un cierre.
«El hecho de que existan muchas proteínas de este tipo y que se unan sólo en combinaciones específicas asegura que la carga sea llevada a un lugar preciso», explican los reporteros.
El trabajo de Rothman también sirvió para descubrir que existe un origen ancestral evolutivo en el sistema de transporte, pues algunos de los genes que identificó Schekman en la levadura también estuvieron presentes en el estudio con mamíferos de Rothman.
El alemán Thomas Südhorf fue un paso más allá, pues su curiosidad lo llevó a estudiar cómo las células se comunican entre ellas en el cerebro.

El momento adecuado
Para que una persona piense, actúe o sienta, las neuronas en su cerebro deben comunicarse. «Esta comunicación ocurre en sinapsis, uniones especializadas que permiten a las neuronas intercambien información en cuestión de milisegundos», se puede leer en el sitio del laboratorio de Südhof de la Escuela de Medicina de la Universidad de Stanford.
Así, la contribución de Südhof en resolver este rompecabezas celular está en el tiempo.
Todo el proceso del tráfico vesicular descrito por sus antecesores Schekman y Rothman sólo puede ocurrir cuando las células nerviosas envían señales a sus vecinos.
Para que esto ocurra de una forma precisa, Südhof descubrió que los iones de calcio entran en acción. El especialista, junto a su equipo identificó la maquinaria molecular que responde al influjo de iones de calcio y dirige a las proteínas para que las vesículas se junten con la membrana exterior de la célula nerviosa.
En ese momento se abre una ventana que permite la liberación de la carga que será transportada. Cuando esto no ocurre en el momento adecuado, ocurren problemas.

El trabajo de Südhof ha permitido en que aumente la evidencia que relaciona las deficiencias en la transmisión de la información con enfermedades como el Alzheimer y el autismo.

El insomnio de los astronautas

En diciembre de 1973, pocos días antes de Nochevieja, los tres astronautas a bordo de la estación espacial Skylab llegaron a un punto límite y se rebelaron contra el control de Tierra. Completamente agotados, Carr, Pogue y Gibson apagaron la conexión de radio con Houston y se tomaron el día libre por su cuenta, para descansar, darse una ducha y mirar a la Tierra


Después de seis semanas de misión, la sobrecarga de trabajo y la falta de descanso les condujeron a protagonizar el primer motín en el espacio y a lanzar un aviso sobre la organización de este tipo de misiones. «Las tareas nos sobrepasaron», explicó el comandante de la misión Gerald Carr. «A las diez de la noche, cuando se suponía que nos debíamos ir a la cama, ninguno de nosotros podía hacerlo porque aún teníamos cosas que hacer. No estábamos teniendo el tipo adecuado de descanso». 



Cuarenta años después, el sueño de los astronautas sigue siendo un motivo de preocupación y de estudio. La adaptación al entorno espacial- y las tareas acumuladas- alteran sus ciclos biológicos y provoca un fenómeno conocido por los científicos como «desincronización circadiana». Estos cambios apenas empiezan a ser comprendidos y han abierto toda una nueva rama de investigaciones y de posibles soluciones, al tiempo que han inducido a la NASA a estudiar qué medidas deberán tomar cuando los astronautas exploren o colonicen otros cuerpos del Sistema Solar como Marte o la Luna.


Sueños interrumpidos 

El problema del sueño de los astronautas es que provoca un nivel de fatiga mental que pone en peligro sus misiones. Los estudios realizados en la última década indican que los tripulantes de la Estación Espacial Internacional (ISS) duermen de media unas 6 horas al día, dos horas menos de lo recomendado, lo que tiene consecuencias en su rendimiento e irritabilidad.

Según el seguimiento realizado en varios trasbordadores espaciales hasta 1998, los astronautas duermen menos en los primeros y últimos días de su misión y muchos de ellos apenas alcanzan las dos horas de sueño. «Yo he tenido la suerte de dormir muy bien en el espacio las dos veces que he estado», relata el astronauta español Pedro Duque alainformacion.com. «Pero en general se duerme menos, ya que los músculos están relajados la mayor parte del día y el cansancio es más mental que otra cosa».

Otros estudios indican que la estructura del sueño también se altera(con episodios de sueño REM más cortos que en tierra) y que los astronautas son a menudo despertados por ruidos, cambios de temperatura, la actividad de sus compañeros, incomodidad física o la asignación de tareas inesperadas, como las caminatas espaciales de reparación. «Hubo días en los que la fatiga era inevitable», recuerda Pedro Duque, «ya que las conexiones de televisión en directo dependían de la posición de la Estación en la órbita de la Tierra y a veces me tenía que despertar dos o tres horas antes de lo previsto para poder hacer una. Esos días se hacían largos».

La importancia de la luz

Los astronautas de la ISS dan una vuelta completa a nuestro planeta cada hora y media, con lo que viven un amanecer y un ocaso cada 90 minutos. En el interior de la estación no hay un día y una noche bien diferenciados, y los tripulantes viven bajo la luz artificial y longitudes de onda diferentes a las del entorno terrestre. Nuestro reloj biológico interno está regulado principalmente por una zona del hipotálamo llamadanúcleo supraquiasmático que controla los procesos metabólicos en función de las señales de luz del exterior.

Hace apenas una década, los científicos descubrieron una serie de fotorreceptores presentes en el ojo – que no tienen ningún papel en la visión – que regulan la producción de melatonina en la glándula pineal. Cuando estos receptores son expuestos a una determinada longitud de onda coincidente con la luz azul – y parecida al color del cielo – el cerebro frena la segregación de melatonina y está más alerta, mientras que cuando la luz está en el espectro del rojo comienza a emitir la señal del sueño. De esta forma, diseñando un sistema de iluminación, se podrían regular los ciclos de sueño y modular los ritmos circadianos.

En la Universidad de Harvard, Steven Lockley y su equipo llevan años estudiando este efecto y ha ensayado un sistema de luz dinámica con los miembros del control en tierra de las misiones a Marte. La experiencia ha demostrado que la alteración de los ritmos circadianos afecta también a las personas que no viajan al espacio pero tienen que desplazar sus horarios para seguir a una nave en otro planeta. En el año 1996, por ejemplo, el equipo de controladores de la NASA que seguía los movimientos del vehículo Sojourner por la superficie de Marte sufrió las consecuencias de que los días marcianos tengan 39 minutos más que los terrestres y muchos técnicos estaban tan fatigados que reclamaron que se hiciera una parada. Desde entonces, se siguen programas especiales para evitar que todo el mundo termine con la cabeza ‘en otro planeta’.


Nuevas luces para la estación

Mediante un sistema de luces LED que enriquece el ambiente de luz azul en determinadas horas y de luz roja en otras, a lo largo de un ciclo de 24 horas, Lockley ha obtenido resultados satisfactorios en misiones marcianas como la Phoenix. Su compañera Elizabeth Klerman, del departamento de salud del sueño del hospital Brigham de Boston, también ha diseñado un modelo matemático que predice los efectos de los cambios de horario por imprevistos, de modo que el reloj interno sufra lo menos posible. Este software permite saber cómo reaccionará el cuerpo si le hacemos trabajar a determinadas horas. «Si solo has estado despierto durante 5 o 6 horas, apenas importa qué hora del día es»,asegura Klerman. «Pero si has estado despierto 16 horas es muy diferente que sean las tres de la tarde o las tres de la madrugada».

La culminación de estos experimentos ha venido con la aprobación por parte de la NASA de un programa para cambiar todas las luces de la Estación Espacial Internacional en 2015. La compañía Boeing proporcionará más de cien bombillas LED que se irán modificando a lo largo de la jornada de los astronautas. En concreto, el panel emitirá luces azules en el momento de empezar la jornada (que aumentan el nivel de alerta), pasará a luz blanca para las horas de trabajo y emitirá luz en elespectro del rojo para disparar la melatonina y facilitar la señal de sueño en los astronautas. «Estamos seguros de que tendrá un efecto», asegura Klerman. «Lo que queremos saber es qué tipo de efecto será y qué proporciones tendrá». Si la idea funciona, los científicos esperan que la tecnología se pueda utilizar en otras instalaciones en las que se requiere luz artificial, como hospitales, submarinos o fábricas.

Instrucciones para dormir en otros mundos

En un informe elaborado en 2009 por los principales especialistas en alteraciones de los ritmos circadianos, la NASA explora la manera en que afectarán los ciclos de luz en el caso de colonizar o viajar a otros mundos (ver PDF). En el caso de misiones a la Luna, recuerdan, los programas de adaptación variarían en función de la región elegida para establecerse. Si se aterrizara sobre la zona del cráter Shackleton, cerca del polo sur de nuestro satélite, los astronautas estarían expuestos a una luz casi permanente, durante el 90% del tiempo. Las expediciones al Ártico en este tipo de condiciones revelan que las personas pueden terminar por no saber muy bien cuándo tienen que descansar, por lo que habría que tomar contramedidas. Si el lugar elegido para establecerse fueran las zonas ecuatoriales de la Luna, explican los especialistas, el ciclo sería de dos semanas de luz seguidas de dos semanas de oscuridad, lo que también alteraría el reloj interno de los astronautas, aunque se desconoce en qué medida.

En cuanto una misión al planeta Marte, cuando se superen las dificultades logísticas que plantea el reto actualmente, los astronautas contarían con un desfase horario durante el propio desplazamiento al planeta rojo. El siguiente problema sería la intensidad de la luz del día en la superficie marciana, pues el brillo del sol es allí aproximadamente la mitad que en la Tierra. El cielo, de tono rojizo, también tendría una influencia, pues las longitudes de onda cercanas al rojo activan los niveles de melatonina, y la duración del día (24 horas y 39 minutos) provocaría un aumento de los niveles de sueño y de irritabilidad.

En definitiva, concluyen los especialistas, «el ambiente espacial es ruidoso, pobremente iluminado y , para algunos, incómodo. Mover los horarios y duras cargas de trabajo puede suponer desafíos adicionales. Entender las vulnerabilidades individuales causadas por la pérdida de sueño, es esencial para la futura preparación de misiones a la Luna y a Marte».

Referencias: Risk of Performance Errors Due to Sleep Loss, Circadian Desynchronization, Fatigue, and Work Overload Human Health and Performance Risks of Space Exploration Missions (NASA)

Eesha Khare crea baterías que cargan en 20 segundos y duran 10 veces más

Una adolescente estadounidense ha desarrollado unas baterías capaces de cargarse por completo en 20 o 30 segundos basadas en supercondensadores y con cierto grado de flexibilidad por lo que podrían ser aplicadas a varios sistemas. Además de la rapidez de carga, estas baterías podrían aguantar 10 veces más ciclos de carga.
   Una joven estadounidense de 18 años de California, Eesha Khare, presentó el pasado miércoles su proyecto, unas baterías desarrolladas a partir de supercondensadores con un corto periodo de carga, al Intel ISEF 2013 promovido por la compañía tecnológica para jóvenes inventores realizado en Phoenix (Estados Unidos).


   Con este nuevo invento, la estadounidense ha ganado el primer premio del concurso Foundation Young Scientist Award, consistente en una beca para Intel valorada en 50.000 dólares(38.815 euros) por el original invento.


   Khare comenzó a investigar este campo de la tecnología debido a que, como usuaria de ‘smartphone’, observó la rapidez con la que las baterías de estos dispositivos se agotan. «Mi batería siempre se muere», declaró.


   Por ello, decidió buscar nuevos materiales con los que poder crear una batería que aumentara el tiempo en el que se mantiene cargada así como el número de cargas que se pudieran realizar en su ciclo de vida. De esta manera, pensó en los superdensadores, un material capaz de almacenar gran cantidad de energía sin deteriorarse en gran medida, por lo que puede realizar mayor número de cargas.
   Así, Khare desarrolló unos dispositivos de pequeño tamaño, capaces de instalarse en la batería de un ‘smartphone’ aumentando el número de ciclos de carga hasta los 10.000 frente a los 1.000 actuales, y reduciendo el tiempo de carga, permitiendo que la batería se cargue por completo en 20 o 30 segundos y admitiendo mayor carga que las baterías convencionales.
   Además, las baterías desarrolladas por la joven tienen cierto grado de flexibilidad por lo que se piensa en un mayor número de aplicaciones fuera de la tecnología móvil. «También es flexible, así que puede usarse en pantallas enrollables, ropa y telas», afirmó Khare.


   Por ahora, estos dispositivos sólo se han probado en una lámpara LED pero la idea de la joven es su aplicación en ‘smartphones’ y otros equipos portátiles.


* Editado por CTsT, 25 Mayo 2013

Para mayor información revisa estos enlaces:



Transplante de cara a Carmen Tarleton

Los médicos salvaron la vida de Carmen Tarleton luego de que su exmarido la rociara con blanqueador industrial. Estuvo en coma inducido y fue sometida a más de 50 cirugías. Pero poco pudieron hacer con su rostro desfigurado.

Lo peor vino después: los niños huían de ella. Y cuando los canales de noticias presentaron su historia advirtieron que las imágenes podrían herir la sensibilidad de la audiencia.
Durante cuatro años, Tarleton vivió esta realidad, sumada a un enorme dolor. Luego, su cirujano plástico en el Hospital de Mujeres de Boston le sugirió una posibilidad: hacía poco había realizado el primer trasplante de cara de Estados Unidos y creyó que ella podría ser apta para la misma intervención.
Pese a que la idea le pareció extraña, Tarleton aceptó.
Pasó la cirugía y este miércoles presentó su nuevo rostro en una conferencia de prensa.

Desconoce el nombre de la donante, pero asegura que piensa en ella cada día.
“Converso con ella y le hago saber lo agradecida que estoy”, le dijo Tarleton, de 44 años, a CNN. “Estoy emocionada, muy entusiasmada con lo que tengo”, agregó.
“Fueron varias noches sin dormir”
El doctor Bohdan Pomahac jamás había visto a alguien como Tarleton.


Director de la unidad de quemados del hospital, Pomahac trató las heridas de Tarleton luego del ataque de junio de 2007. El blanqueador había quemado más del 80% de su cuerpo.
(Abajo vemos  un par de fotos durante el juicio  a su esposo que hizo el terrible daño:)

En 2011, Pomahac y su equipo practicaron el primer trasplante total de cara de los Estados Unidos. En diciembre de ese año, se aprobó la misma cirugía para Tarleton, pero debieron pasar 14 meses para que se encontrara una donante adecuada.
La operación, que duró 14 horas, se hizo en febrero pasado y Tarleton se convirtió en la sexta persona en los Estados Unidos que recibe un trasplante completo de cara.

Al principio, las cosas no anduvieron bien. El cuerpo de Tarleton empezó a rechazar el nuevo rostro y se creyó que el trasplante fallaría.
“Fueron varias noches sin dormir”, dijo Pomahac.
Pero la cara finalmente fue salvada.
“Pudo ver a través de mis cicatrices”

Completamente ciega de un ojo y con visión parcial en el otro, Tarleton todavía puede vivir sin ayuda en su departamento de Vermont.
Emocionalmente, Tarleton se ha recuperado. Logró perdonar a su exmarido, hoy en prisión, da charlas inspiracionales y publicó un libro: “Overcome: Burned, Blinded and Blessed» (Superación: quemada, ciega y bendecida).
En diciembre, empezó a tomar clases de piano con un profesor local llamado Sheldon Stein. Su rostro aún estaba desfigurado, pero el hombre se enamoró de ella.
“Pudo ver a través de mis cicatrices”, dijo Tarleton.
Stein la ayudó a recuperarse de la intervención. Al principio, casi no tenía control alguno sobre su cara, pero ahora puede esbozar una pequeña sonrisa y sus médicos dicen que con el tiempo podrá mover sus cejas y hacer otras expresiones.
¿Su mayor deseo? Lograr la fuerza y la coordinación necesarias para besar al hombre que considera “el amor de su vida”.
“Sé que ese día llegará”, dijo Tarleton.

* Texto de CNN (1 Mayo 2013) y edición general de CTsT (25 Mayo 2013)

Mayor información en los siguientes enlaces:

Entrevista al matemático peruano Harald Helfgott

Helfgott acaba de demostrar la conjetura débil de Goldbach, un problema de teoría de números que había permanecido irresuelto por 271 años.



El matemático peruano acaba de hacer historia al hacer pública su demostración de un enunciado de importancia central en teoría de números: la conjetura débil de Goldbach. Este resultado (del que seguramente oiremos más en el futuro) viene a coronar una trayectoria académica de ensueño. A sus 35 años, Helfgott ya se ha hecho acreedor, entre otras distinciones, del Premio Leverhulme, otorgado por la Fundación Leverhulme, del Premio Whitehead, otorgado por la Sociedad Matemática de Londres, y del Premio Adams, otorgado por la Facultad de matemáticas de Cambridge y el St. John’s College. Vive actualmente en París y se desempeña como investigador en el CNRS (Centro Nacional para la Investigación Científica). 
Inmediatamente luego de que la noticia rebotara en las redes (luego de haber sido mencionada por el matemático australiano Terence Tao en su cuenta de Google+), lo contactamos y accedió a concedernos por e-mail la siguiente entrevista:
Alonso Almenara: La conjetura débil de Goldbach afirma que:
Todo número impar mayor que 5 puede expresarse como suma de tres números primos.

Tenemos expresada en una línea de texto una verdad que no había podido ser demostrada por más de 270 años, y que ha sido descrita por GH Hardy en su famoso discurso de 1921 como uno de los problemas irresueltos más difíciles de las matemáticas.
Curiosamente, el enunciado es entendible por un escolar; su demostración, sin embargo, ocupa 133 páginas. ¿Podría intentar describir para una audiencia de no especialistas algunas de las razones por las que esta demostración ha eludido a los matemáticos por tanto tiempo?
Harald Helfgott: Primero – se logró progresar muy poco antes del siglo XX. El primer gran paso fue tomado por Hardy y Littlewood, en 1923; fueron ellos quienes comenzaron a usar el análisis de Fourier (“método del círculo”) en la teoría de números. En general, la teoría analítica de números – la rama que estudia, entre otras cosas, cuántos números primos hay hasta un número dado, cómo están distribuidos, etc. – comenzó a florecer recién a fines del siglo XIX.
Los trabajos de Hardy y Littlewood, en 1923, y de Vinogradov, en 1937, fueron trabajos pioneros, hechos en una época en que varios conceptos que resultaron ser relacionados a ellos – por ejemplo, la así llamada “gran criba” – aun no habían sido desarrollados o comprendidos completamente.  Curiosamente, la importancia de “suavizar” funciones antes de usar el análisis de Fourier era algo comprendido por los analistas, como Hardy-Littlewood, o por los matemáticos aplicados y físicos, o, probablemente, por los técnicos de su estación de radio, pero no se volvió un lugar común entre la gente de teoría de números hasta hace una generación, a lo más.
También se ha requerido bastante tiempo de cálculo, dado el enfoque que seguí, aunque los requisitos de tiempo de máquina, si bien considerables, no fueron enormes. Hace 30 años, había computadoras de suficiente potencia, pero el tiempo de maquina era mucho más costoso, y conseguir acceso a él hubiera sido una larga labor de política académica. En consecuencia, los matemáticos seguían rutas un poco distintas al intentar probar el teorema. 
Por lo demás, no es inusual que un problema matemático quede irresuelto por siglos. Ya los griegos se planteaban preguntas que fueron resueltas solo en el siglo XIX.
AA: Su trabajo es el paso final en una serie de avances recientes en la carrera hacia la demostración del teorema débil de Goldbach. Entre los matemáticos contemporáneos que se han interesado en ese tema podemos mencionar al medallista Fields Terence Tao, a quien algunos han catalogado como el matemático más brillante en la actualidad. Tao es quien más cerca ha estado hasta ahora de lograr lo que usted ha logrado, y tengo entendido que él ha estado en contacto con usted y ha ratificado su trabajo. ¿Me podría decir algunas palabras sobre ese contacto entre colegas con un matemático tan admirado que valora y entiende la magnitud de su investigación?
HH: Yo diría que Tao me tiene confianza en esto, y no que lo haya ratificado completamente – ¡todavía tiene que leerlo! Conoce los métodos que he utilizado, hemos compartido ideas en el pasado, hemos hablado del problema… También escribimos un artículo junto con una tercera persona sobre otro tema hace unos años. En estos últimos tiempos, empero, he hablado más del problema con otra gente – por ejemplo, [Olivier] Ramaré, quien logró el resultado inmediatamente anterior al de Tao en 1995. 
La mayor parte de los medallistas Fields que conozco son gente sencilla. ¡Los difíciles son los que quisieran volverse medallistas Fields! Claro, a veces los hábitos quedan… Pero es lo mismo en cualquier área.
AA: La aproximación que usted ha usado para lograr estos resultados aún no nos encamina necesariamente hacia una demostración final del teorema fuerte de Goldbach, que estipula que Todo número par mayor que 2 puede escribirse como suma de dos números primos. ¿Podría decirnos algunas palabras al respecto? ¿Tiene planes de atacar este problema?
HH: Me parece que el teorema fuerte de Goldbach es mucho más difícil. Se necesitará un cambio completo de enfoque. No sé si será resuelto en nuestras vidas. 
AA: Aunque usted acaba de dar a conocer sus resultados hace muy poco, imagino que ya ha habido algunas reacciones de sorpresa o de escepticismo en la comunidad matemática internacional. ¿Cómo describiría los comentarios que ha recibido?
HH: En verdad la reacción ha sido muy positiva. Varios especialistas sabían que yo trabajaba sobre el problema. Mi trabajo, en general, es conocido en el área, y al parecer se me tiene confianza.
AA: ¿Cómo se inició en las matemáticas? ¿De dónde proviene esa pasión?
HH: De la manera aburrida: de la casa. Mi padre escribió libros de análisis y geometría cuyos borradores leí; mi madre es estadística. Crecí entre libros, y se me alentó en mis intereses. Cuando tenía 12 o 13 años, comencé a ir a grupos de jóvenes que se reunían en San Marcos y la Católica para entrenarse para las competencias (“olimpiadas de matemática”) a nivel latinoamericano. Pronto se nos hizo claro que la competencia no era lo más importante – lo importante era aprender juntos, pedir consejos a estudiantes con más experiencia, y conocer a jóvenes de otros países con los mismos intereses. 
AA: Usted ha desarrollado una carrera espectacular en los Estados Unidos y Europa; ha ganado importantes premios y su trabajo ya era conocido en este ámbito en círculos académicos. Sin embargo, estos nuevos resultados van a darle muy pronto un nivel de visibilidad distinto. ¿Cómo se siente ahora y cuáles son sus proyectos a futuro?
HH: Creo que se trata de una buena oportunidad para hacer un poco de divulgación matemática. Ya desde hace tiempo ayudo a organizar cursillos y escuelas de verano dentro y fuera de Sudamérica – probablemente ser visible fuera del ámbito matemático facilite conseguir apoyo.
AA: Este logro que acaba de hacer público va a inspirar a muchas personas. Entre ellas, a escolares y jóvenes matemáticos peruanos. ¿Qué recomendaciones les daría a estas personas que a lo mejor sueñan con embarcarse en una aventura como la suya y dedicar su vida a la investigación en este campo tan competitivo?
HH: Lo mejor es comenzar pronto, de preferencia desde la secundaria, y no limitarse a lo que enseñan en la escuela. Es muy estimulante conseguirse libros con problemas – uno de los primeros textos serios que leí fue precisamente el librito de Vinogradov, de teoría de números. Es igualmente importante ponerse en contacto con otros estudiantes – si uno aprende solo, puede pasar mucho tiempo en cuestiones de poca importancia; se aprende más rápido discutiendo.
AA: Aunque es difícil prever en qué contextos se terminará aplicando un aporte como éste, sé que ha habido avances en la teoría de números que han resultado bastante fructíferos en el campo de la seguridad de la información. Cada vez que alguien manda un e-mail o hace una transacción por internet está poniendo a trabajar resultados obtenidos por alguno de sus colegas. ¿Piensa que sus investigaciones podrían tener un impacto similar?
HH: Dudo que esto tenga aplicación alguna a la criptografía. Más bien, para llegar al resultado final, tuve que mejorar muchas técnicas de varias áreas, algunas de ellas aplicadas. Por ejemplo, necesitaba cotas explicitas para lo que se conoce como funciones parabólicas cilíndricas; estas habían sido utilizadas por mucho tiempo por físicos e ingenieros, pero, si bien había una buena serie de trabajos de alrededor de 1960, no tenían lo que necesitaba, así que tuve que derivar cotas explicitas yo mismo. Estas serán de interés para los especialistas de las ramas aplicadas, quienes ahora, sin duda, retomaran esa parte de mi trabajo y la mejoraran a su vez. Doy un ejemplo menor pero espero que sea bastante típico.  
AA: Cuando lo contacté para hacerle esta entrevista, usted me comentó que cada vez que pasa por Lima se vuelve un asiduo oyente de Radio Filarmonía. Me gustaría preguntarle dos cosas respecto a eso: por un lado, cuáles son los compositores o los géneros musicales que más le interesan, y por otro si cree que de algún modo su pasión por las matemáticas tiene una relación con el placer que siente al escuchar música. ¿Hasta qué punto piensa que estos campos están relacionados?
HH: Creo que mi primer contacto con la música de fines del siglo XIX y comienzos del XX fue a través de radio Filarmonía, cuando todavía era radio Sol Armonía. El gusto me ha quedado; ahora mismo estaba escuchando la tercera sinfonía de Roussel.
Hay probablemente más melómanos entre los matemáticos que en la población en general, o que entre la gente de Letras. Cuando estaba en la escuela de posgrado, a veces había un concierto de fin de año solo de la facultad de matemática, en la cual había muchos buenos intérpretes aficionados. No sé si es un signo de una afinidad profunda o simplemente una tendencia cultural que se ha propagado a través de la comunidad matemática internacional. Probablemente haya un poco de los dos.
En lo que se refiere al otro lado – muchos músicos saben poco de matemática, y la utilidad de la matemática para la composición ha sido limitada: puede decirse que hay un tanto de matemática en Bach o Schoenberg, pero de un tipo muy elemental. Hay algunas ideas explícitamente matemáticas en cierta música de la segunda mitad del siglo XX, pero no creo que haya convencido mucho ni a las audiencias ni a los matemáticos. 
Es probable que los lazos más fuertes no sean entre la matemática y la composición o la interpretación, sino entre la matemática y la teoría musical, el diseño de instrumentos, las técnicas de grabación… La teoría musical comenzó como parte de la matemática, con Pitágoras y sus discípulos. Hablé del análisis de Fourier, que no es sino el análisis de frecuencias, y del método del círculo, que es el análisis de frecuencias racionales – eso está cerquísima de la música. El timbre de un instrumento está dado por la intensidad de sus armónicos, aparte del efecto del ruido. Cuando uno toca “la”, no suena solo éste “la”, a 440 hertzios, sino también, en menor medida, “la” a 880 hertzios, “mi” a 660 hertzios (660 = 440 multiplicado por 3/2), “fa sostenido” a aproximadamente 735 hertzios (o casi 440 multiplicado por 5/3),… En otras palabras, se trata de la frecuencia principal multiplicada por racionales de pequeño numerador y denominador. Y, por cierto, sus oyentes también están aplicando el análisis de Fourier de otra manera: al sintonizar su frecuencia, están tomando la intensidad del campo electromagnético alrededor de su antena y aislando el componente de frecuencias en la vecindad inmediata de 102.7FM, para así poder escuchar solo lo que Vds. transmiten.

IBM Research hace la película más pequeña del mundo utilizando átomos

Científicos de IBM presentaron la película más pequeña del mundo, hecha con uno de los elementos más diminutos del universo: los átomos. Bajo el título “A Boy and His Atom” (Un niño y su átomo), la película, verificada por Guinness, se hizo con miles de átomos posicionados con precisión para crear casi 250 cuadros de acción con la técnica stop-motion (filmación cuadro por cuadro).


“Un niño y su átomo” presenta un personaje llamado Atom, que se hace amigo de un átomo individual y sale a dar un paseo divertido, durante el cual baila, juega a atrapar la pelota y salta en una cama elástica. Con una banda musical alegre de fondo, la película constituye una forma singular de transmitir la ciencia fuera de la comunidad de investigación.

Movilizar los átomos es una cosa; se puede hacerlo agitando la mano. Captar, posicionar y ajustar átomos para crear una película original a nivel atómico es una ciencia precisa y totalmente novedosa”, señaló Andreas Heinrich, investigador principal de IBM Research. “En IBM, los investigadores no sólo leemos ciencia; la hacemos. Esta película es una forma divertida de compartir el mundo a escala atómica y mostrarle a la gente común los desafíos y la diversión que la ciencia puede crear”.



Haciendo la película
Para hacer la película, se movieron los átomos con un microscopio de efecto túnel de barrido inventado por IBM.
Esta herramienta, que recibió un Premio Nobel, fue el primer dispositivo que permitió a los científicos visualizar el mundo al nivel del átomo individual”, explicó Christopher Lutz, científico investigador de IBM Research.
Pesa dos toneladas, funciona a una temperatura de 268 grados centígrados negativos y magnifica la imagen de la superficie atómica más de 100 millones de veces. La capacidad de controlar la temperatura, presión y vibraciones a niveles exactos hace que nuestro laboratorio de IBM Research sea uno de los pocos lugares del mundo en el que los átomos pueden ser movilizados con tanta precisión”, agregó.

Mediante la operación remota desde una computadora estándar, los investigadores de IBM utilizaron el microscopio para controlar una aguja ultra-fina sobre una superficie de cobre para “sentir” los átomos.
A tan sólo un nanómetro de la superficie, que es de mil millonésimas de metro en distancia, la aguja puede atraer físicamente átomos y moléculas de la superficie y llevarlos a una ubicación especificada con precisión sobre la superficie. El átomo en movimiento produce un sonido singular, que constituye la señal crítica que permite identificar cuántas posiciones realmente se ha movido.
Durante la creación de la película, los científicos renderizaron imágenes en planos fijos de los átomos individualmente colocados. El resultado fue 242 cuadros individuales.

La necesidad de comprimir Big Data
El desarrollo de la película más pequeña del mundo no es un terreno totalmente nuevo para IBM. Durante décadas, los científicos de IBM Research han estudiado materiales a nanoescala para explorar los límites del almacenamiento de datos, entre otras cosas.
A medida que los circuitos de computación siguen achicándose hacia dimensiones atómicas –tal como lo han hecho durante décadas, según la Ley de Moore – los diseñadores de chips se enfrentan con limitaciones físicas para el uso de las técnicas tradicionales.

La exploración de métodos no convencionales de magnetismo y las propiedades de los átomos en superficies bien controladas permite a los científicos de IBM identificar caminos totalmente novedosos para la computación.
Utilizando el objeto más pequeño disponible para la ingeniería de dispositivos de almacenamiento de datos – los átomos individuales – el mismo equipo de investigadores de IBM que desarrolló esta película también creó recientemente el bit magnético más pequeño del mundo. Fueron los primeros en responder a la pregunta de cuántos átomos se necesitan para almacenar en forma confiable un bit de información magnética: 12.


En comparación, se necesitan aproximadamente 1 millón de átomos para almacenar un bit de datos en una computadora o dispositivo electrónico moderno. Si fuera comercializada, esta memoria atómica algún día podría llegar a almacenar todas las películas que se hicieron en la historia del cine, en un dispositivo del tamaño de una uña.

La investigación implica formular interrogantes que van más allá de lo que se necesita para encontrar buenas soluciones de ingeniería de corto plazo a los problemas. Conforme la creación y el consumo de datos crecen, el almacenamiento de datos debe hacerse más pequeño, hasta llegar al nivel del átomo”, continuó Heinrich. “En esta película, estamos aplicando las mismas técnicas utilizadas para desarrollar nuevas arquitecturas de cómputo y formas alternativas de almacenar datos”.


 * 07 de May de 2013, EbizLatam

Young Girl Receives Lifesaving Windpipe Transplant Made From Her Stem Cells

Hannah Warren was born without a trachea but now has one made from plastic fibers and a stew of her own stem cells.
The 2-year-old Korean Canadian has spent every day of her life in intensive care, kept alive by a tube that substituted for the windpipe that was supposed to connect her mouth to her lungs. But nearly a month after her transplant, the toddler is mostly breathing on her own and is responding to doctors and nurses.
The surgery, pioneered by Dr. Paolo Macchiarini, director of the Advanced Center for Translational Regenerative Medicine at the Karolinska Institute in Stockholm, was only the sixth performed in the world, and Hannah was the youngest patient and first to receive the transplant in the U.S. The procedure was approved by the FDA as an experimental operation for patients with very little hope of survival; being born without a trachea is fatal in 99% of cases.
Macchiarini performed the nine-hour operation on April 9 at the Children’s Hospital of Illinois after carefully creating the windpipe using stem cells from Hannah’s bone marrow that were saturated over a matrix of plastic fibers shaped into a tube.
Exactly what happens to the windpipe after it is transplanted isn’t clear, but researchers believe that placing stem cells, which are capable of developing into different types of body cells, can pick up signals from their environment and integrate with existing tissues. Macchiarini told the New York Times that the body’s regenerative capabilities may help such bioengineered organs to integrate with existing tissues. Children may make the ideal patients for these procedures since they have natural and active abilities to heal and grow. “Hannah’s transplant has completely changed my thinking about regenerative medicine,” he told the Times, adding that he wants to conduct a clinical trial in the U.S.
According to the Associated Press, only about 1 in 50,000 children worldwide are born with a windpipe defect or without one. For these patients, and for others with defective or diseased organs, manipulating stem cells to generate healthy tissues or organs could be their only chance at survival.
Macchiarini performed all five of the previous transplants of the bioengineered windpipes; four of the patients have done well, while one, Christopher Lyles, who received his trachea in Stockholm, died. Last year, in describing Lyles’ operation, TIME’s Alice Park wrote:
Macchiarini has been perfecting the process of using stem cells to seed bioengineered scaffolds for organs like the trachea since 2008; in his first such procedure, he used a donor trachea to replace that of a Spanish woman, stripping the organ of its cells and coating it with the woman’s own stem cells. But using a completely synthetic, bioengineered matrix such as the one transplanted in Lyles, he says, makes the transplant safer for the patient, potentially sparing him the complications that can arise if he can’t accept the new organ.
Researchers have used similar stem-cell-seeding techniques to create other organs. Dr. Anthony Atala at Wake Forest University generated bladders and a urethra using scaffolds and patients’ stem cells.
Because of the small number of patients he has treated, his critics say it’s hard to determine how valid Macchiarini’s bioengineering technique is in treating patients like Hannah. But he plans to conduct a clinical trial to properly assess the risks and benefits of the procedure, and document how bodies react to the transplanted devices. Hopefully those trials will show that it’s possible to regenerate not just organs but hope as well.